Tangent lines to circles
The equations of the following tangents to one or two circles are calculated. The constructions are drawn and the construction lines are shown if necessary.
- The tangent to a circle k at a point B.
- The tangents to a circle k through a point P outside the circle
- The tangents to a circle k parallel to a straight line g
- The tangents to two circles k1 and k2
Example 1:
Given: ¯¯¯¯¯ k: M(5|8), r=8.48528, B(-1|2) Tangent to k in B ¯¯¯¯¯¯¯¯¯¯¯¯¯¯ t: x + y = 1
Example 2:
Given: ¯¯¯¯¯ k : M(5|8) , r=5 , P(-1|2) Tangents to k through P ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ t1: 1,06014·x − 6,77319·y = -14,6065 t2: 6,77319·x − 1,06014·y = -8,89348 Points of contact ¯¯¯¯¯¯¯¯¯¯¯¯¯¯ k n t1 = B1(5,77319|3,06014) k n t2 = B2(0,0601439|8,77319)
Example 3:
Given: ¯¯¯¯¯ k : M(5|8) , r=5 , g : -x + 3·y = 0 Tangents on k parallel to g ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ t1: x − 3·y = -3,18861 t2: x − 3·y = -34,8114 Points of contact ¯¯¯¯¯¯¯¯¯¯¯¯¯¯ k n t1 = B1(6,58114|3,25658) k n t2 = B2(3,41886|12,7434)
Example 4:
Given: ¯¯¯¯¯ k1 : M(5|8) , r=5 k2 : M(-1|2) , r=3 Outer tangents ¯¯¯¯¯¯¯¯¯¯¯¯ t1: -4,2923·x + 7,04104·y = -6,36427 t2: -7,04104·x + 4,29230·y = 40,3643 Inner tangents ¯¯¯¯¯¯¯¯¯¯¯¯ t3: 1,21895·x + 2,55228·y = 12,3709 t4: -2,55228·x − 1,21895·y = -8,3709