MatheAss 10.0Stochastics

Binomial Distribution

For a b(k;n;p) distributed random variable X with fixed n and p you can compute

Theory:

n balls are randomly drawn from a container containing a proportion p of red balls. The random variable X stands for the number of red balls drawn. The probability that k of the balls drawn are red, is given by P(X=k) = b(k;n;p).

The values for n and p are entered, where p must be between 0 and 1. Then a simple histogram gives a first overview of the values of P(X=k). The numerical values are output in a table of values.

Example:

  n = 60;    p = .75

     k           P(X=k)          P(0 ≤ X < k)
  ——    ——————   ——————
    40      0,03834033      0,09248427 
    41      0,05610780      0,14859207 
    42      0,07614630      0,22473838 
    43      0,09562559      0,32036397 
    44      0,11083875      0,43120273 
    45      0,11822800      0,54943073 
    46      0,11565783      0,66508856 
    47      0,10335381      0,76844237 
    48      0,08397497      0,85241733 
    49      0,06169589      0,91411323 
    50      0,04071929      0,95483252 
  ——    ——————   ——————
  P(40 ≤ k < 50) =           0,90068858

See also:

Wikipedia: Binomial distribution
Imprint eng.matheass.eu