Binomial Distribution
For a b(k;n;p) distributed random variable X with fixed n and p you can compute
- a histogram of the probabilities P( X = k )
- a table of their values from kmin to kmax
- the probability P( kmin < X < kmax)
Theory:
n balls are randomly drawn from a container containing a proportion p of red balls. The random
variable X stands for the number of red balls drawn. The probability that k of the balls drawn are red,
is given by
The values for n and p are entered, where p must be between 0 and 1. Then a simple histogram gives a first overview
of the values of
Example:
n = 60; p = .75 k P(X=k) P(0 ≤ X < k) —— —————— —————— 40 0,03834033 0,09248427 41 0,05610780 0,14859207 42 0,07614630 0,22473838 43 0,09562559 0,32036397 44 0,11083875 0,43120273 45 0,11822800 0,54943073 46 0,11565783 0,66508856 47 0,10335381 0,76844237 48 0,08397497 0,85241733 49 0,06169589 0,91411323 50 0,04071929 0,95483252 —— —————— —————— P(40 ≤ k < 50) = 0,90068858