Mappings of Polygons

Input | Results | Graphics

Output of the results

The coordinates of the polygon and the mapped polygons are output for each mapping of the chain.

Use the button   in the toolbar to create a report with the results and the graph.

Example 1:

Original polygon
A(1|1), B(5|1), C(5|5), D(3|7), E(1|5), 

1. Translation: dx=2, dy=1  ☑
A(3|2), B(7|2), C(7|6), D(5|8), E(3|6), 

2. Rotation: Z(2|-1), α=-60° ☑
A(5,0981|-0,36603), B(7,0981|-3,8301),
C(10,562|-1,8301), D(11,294|0,90192),

Example 2:

Multiple mappings of the same type are also possible. So you can also apply multiple symmetrys on different axis to the polygon.

Original polygon
A(1|1), B(5|1), C(4|5), 

1. Axial symmetry: a=(PQ), P(0|0), Q(1|1)
A(1|1), B(1|5), C(5|4), 

2. Axial symmetry: a=(PQ), P(0|0), Q(0|1) 
A(-1|1), B(-1|5), C(-5|4), 

3. Axial symmetry: a=(PQ), P(0|0), Q(-1|1) 
A(-1|1), B(-5|1), C(-4|5), 

4. Axial symmetry: a=(PQ), P(0|0), Q(0|1)
A(-1|-1), B(-5|-1), C(-4|-5), 

Example 3:

Original polygon
A(1|1), B(5|1), C(4|5), 

1. Rotation: Z(0|0), α=30°
A(0.366|1.37), B(3.83|3.37), C(0.964|6.33), 

2. Rotation: Z(0|0), α=30°
A(-0.366|1.37), B(1.63|4.83), C(-2.33|5.96),

3. Rotation: Z (0/0), α=30°
A(-1|1), B(-1|5), C(-5|4), 

See also:

Setting the graphics