MatheAss 9.0 − Aktuelles
MatheAss wird auch zwischen den Updates immer mal wieder überarbeitet, meist aufgrund von Benutzerhinweisen. Mit Version 9.0 steht nun eine neue Version, mit vielen neuen Funktionen zur Verfügung.
Was ist neu in MatheAss 9.0?
Folgende Programmteile wurden neu hinzugefügt:
Algebra
- Primzahltupel
In einem Intervall [a,b] werden alle Primzahlzwillinge (p,p+2), Primzahlcousins (p,p+4), Sexy Primes (p,p+6) und Primzahldrillinge bestimmt.
Primzahldrillinge zwischen 1 und 200 (3|5|7) (5|7|11) [7|11|13] (11|13|17) [13|17|19] (17|19|23) [37|41|43] (41|43|47) [67|71|73] [97|101|103] (101|103|107) [103|107|109] (107|109|113) (191|193|197) [193|197|199] 15 Tripel Primzahldrillinge 7 der Form (p|p+2|p+6) und 7 der Form [p|p+4|p+6]
- Prozentrechnen
Berechnet werden der Grundwert G, der Prozentwert W, der Prozentsatz p bzw. p%, der Wachstumsfaktor q und der Endwert E, wenn zwei unabhängige davon eingegeben werden.
Gegeben: ¯¯¯¯¯¯¯¯ Prozentwert W = -120 Wachstumsfaktor q = 95% = 0,95 = 19/20 Ergebnisse: ¯¯¯¯¯¯¯¯¯¯ Grundwert G = 2400 Prozentsatz p% = -5% = -0,05 = -1/20 Endwert E = 2280
- Rechnen mit großen Zahlen (ab April 2021)
Gerechnet wird mit ganzen Zahlen mit maximal 10 000 Ziffern.
1 267 650 600 228 229 401 496 703 205 376 div 1 125 899 906 842 624 = 1 125 899 906 842 624 Rest 0 = 1,13 · 10^15 Rest 0 nCr(100,50) = 100 891 344 545 564 193 334 812 497 256 = 1,01 · 10^29
- Besondere Geraden im Dreieck
- Das Programm bestimmt die Gleichungen der Mittelsenkrechten, der Seitenhalbierenden. der Winkelhalbierenden und der Höhen eines Dreiecks. Außerdem die Mittelpunkte und Radien des Umkreises, des Inkreises und der drei Ankreise.
- Abbildungen
-
Verschiebung, Geradenspiegelung, Punktspiegelung, Drehung, Zentrischer Streckung und Scherung können auf ein n-Eck angewendet werden.
Die Eingabe wurde übersichtlicher gestaltet und beim Schaubild können die Konstruktionslinien eingezeichnet werden. - Kreistangenten (ab Februar 2021)
- Berechnet werden die Gleichungen der folgenden Tangenten:
- Die Tangente an einen Kreis k in einem Punkt B
- Die Tangenten an einen Kreis k durch einen Punkt P außerhalb des Kreises
- Die Tangenten an einen Kreis k parallel zu einer Geraden g
- Die Tangenten an zwei Kreise k1 und k2
- Entfernungen auf der Kugel (ab Dezember 2021)
- Berechnet wird die Entfernung zwischen zwei Punkten auf einer Kugel.
- Folgen und Reihen (ab Mai 2021)
- Das Programm bestimmt die ersten n Glieder einer Folge (ai) und der zugehörigen Reihe
(Summe der Folgenglieder), wenn die ersten Glieder der Folge und eine Rekusrsionsformel
ai=ƒ(a0, a1, ... , ai-1) oder
eine explizite Funktion ai=ƒ(i) gegeben sind.
Die Folge der ungeraden Zahlen z.B. kann explizit definiert werden durch ai = 2·i + 1 oder rekursiv durch ai = ai-1 + 2 mit a0=1 . - Polynome faktorisieren
- Das Programm berechnet die rationalen Nullstellen und die Linearfakorzerlegung eines Polynoms.
- Polynome transformieren
- Ein Polynom p(x) kann in x-Richtung und y-Richtung verschoben oder gestreckt werden.
- Polynome ggT und kgV (ab Februar 2021)
- Das Programm berechnet den größten gemeinsamen Teiler (ggT) und das kleinste gemeinsame Vielfache (kgV) von zwei Polynomen p1(x) und p2(x).
- Kurvendiskussion ganzrationaler Funktionen
- Das Programm führt für eine ganzrationale Funktion (Polynomfunktion) die Kurvendiskussion durch. Das heißt, es werden die Ableitungen und die Stammfunktion (Aufleitung) bestimmt, die Funktion wird auf rationale Nullstellen, auf Extrema, auf Wendepunkte und auf Symmetrie untersucht.
- Kurvendiskussion rationaler Funktionen
- Das Programm führt für eine (gebrochen)rationale Funktion die Kurvendiskussion durch. Das heißt, es werden die Ableitungen, die Definitionslücken und die stetige Fortsetzung bestimmt. Die Funktion wird auf Nullstellen, Extrema, Wendepunkte und das Verhalten für |x|→∞ untersucht.
- Integralrechnung (ab Februar 2021 mit Bogenlängen)
- Statistik
- Im Statistikteil wurde das Histogramm um einen Box-Plot ergänzt.
- Logistische Regression
- Das Programm bestimmt zu einer Messreihe eine Kurvenanpassung an die Logistische Funktion
mit den Parametern a1 = ƒ(0)·S , a2 = ƒ(0) , a3 = S - ƒ(0) , und a4 = -k·S und der Sättigungsgrenze S . - Messreihen der Johns Hopkins University (JHU) zur Corona-Pandemie sind als CSV-Dateien beigefügt.
Geometrie
Gegeben: ¯¯¯¯¯¯¯¯ Ecken: A(1|0) B(5|1) C(3|6) Ergebnisse: ¯¯¯¯¯¯¯¯¯¯ Seiten: a : 5·x + 2·y = 27 b : 3·x - y = 3 c : x - 4·y = 1 Inkreis: Mi(3,119|1,962) r i = 1,390 Ankreise: Ma(7,626|6,136) ra = 4,346 Mb(-4,356|5,784) rb = 6,910 Mc(3,248|-2,427) rc = 2,900

Urbild A(1|1), B(5|1), C(5|5), D(3|7), E(1|5) Parallelverschiebung: dx=2, dy=1 ☑ A1(3|2), B1(7|2), C1(7|6), D1(5|8), E1(3|6) Drehung: Z(2|-1), α=-60° ☑ A2(5,0981|-0,36603), B2(7,0981|-3,8301), C2(10,562|-1,8301), D2(11,294|0,90192), E2(8,5622|1,634)

Gegeben: ¯¯¯¯¯¯¯¯ k1 : M(5|8) , r =5 k2 : M(-1|2) , r =3 Äußere Tangenten ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ t1: -4,2923·x + 7,04104·y = -6,36427 t2: -7,04104·x + 4,29230·y = 40,3643 Innere Tangenten ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ t3: 1,21895·x + 2,55228·y = 12,3709 t4: -2,55228·x − 1,21895·y = -8,3709

GPS dezimal ¯¯¯¯¯¯¯¯¯¯¯ Berlin : 52.523403, 13.4114 New York : 40.714268, -74.005974 GPS dms ¯¯¯¯¯¯¯ Berlin : 52° 31' 24.2508" N, 13° 24' 41.0400" E New York : 40° 42' 51.3648" N, 74° 0' 21.5064" W . . . Entfernung ¯¯¯¯¯¯¯¯¯¯ d = r · α [rad] = 6385,112
Analysis
Folge ¯¯¯¯¯ ( a[ i ] ) = (1; 3; 5; 7; 9; 11; 13; 15; 17; 19) Reihe ¯¯¯¯¯ ( Σ a[ i ] ) = (1; 4; 9; 16; 25; 36; 49; 64; 81; 100)
p(x) = x5 - 9·x4 - 82/9·x3 + 82·x2 + x - 9 = (1/9)·(9·x5 - 81·x4 - 82·x3 + 738·x2 + 9·x - 81) = (1/9)·(3·x - 1)·(3·x + 1)·(x - 9)·(x - 3)·(x + 3) Rationale Nullstellen: 1/3, -1/3, 9, 3, -3
ƒ(x) = - 1/4·x4 + 2·x3 - 16·x + 21 Verschiebung um dx = -2 , dy = 0 ƒ(x + 2) = - 1/4·x4 + 6·x2 + 1
p1(x) = 4·x6 - 2·x5 - 6·x4- 18·x3 - 2·x2 + 24·x + 8 p2(x) = 10·x4- 14·x3 - 22·x2 + 14·x + 12 ggT(p1,p2) = x2 - x - 2 kgV(p1,p2) = 40·x8 - 36·x7 - 76·x6 - 144·x5 + 88·x4+ 356·x3 - 4·x2 - 176·x - 48
Funktion : ¯¯¯¯¯¯¯¯ ƒ(x) = 3·x4 - 82/3·x2 + 3 = 1/3·(9·x4 - 82·x2 + 9) = 1/3·(3·x - 1)·(3·x + 1)·(x - 3)·(x + 3) Ableitungen : ¯¯¯¯¯¯¯¯¯¯ ƒ'(x) = 12·x3 - 164/3·x ƒ"(x) = 36·x2 - 164/3 ƒ'"(x) = 72·x Stammfunktion ¯¯¯¯¯¯¯¯¯¯¯¯ ƒ(x) = 3/5·x5 - 82/9·x3 + 3·x + c …

Funktion : ¯¯¯¯¯¯¯¯ 3·x3 + x2 - 4 (x - 1)·(3·x2 + 4·x + 4) ƒ(x) = —————— = ——————————— 4·x2 - 16 4·(x - 2)·(x + 2) Definitionslücken ¯¯¯¯¯¯¯¯¯¯¯¯¯¯ x = 2 Pol mit Vorzeichenwechsel x =-2 Pol mit Vorzeichenwechsel Ableitungen : ¯¯¯¯¯¯¯¯¯¯ 3·(x4 - 12·x2) 3·(x2·(x2 - 12)) ƒ'(x) = ———————— = ————————— 4·(x4 - 8·x2 + 16) 4·(x - 2)2·(x + 2)2 6·(x3 + 12·x) 6·(x·(x2 + 12)) ƒ"(x) = ——————————— = ———————— x6 - 12·x4 + 48·x2 - 64 (x - 2)3·(x + 2)3 …

ƒ1(x) = cosh(x) ƒ2(x) = x^2+1 Integrationsintervall [a;b] von -2 bis 2 Orientierter Inhalt : A1 = -2,07961 Absoluter Inhalt : A2 = 2,07961 Bogenlängen : L1[a;b] = 7,254 L2[a,b] = 9,294

Stochastik
Daten aus: "Hopfenwachstum.csv" Sättigungsgrenze: 6 Dunkelziffer: 1 4,0189 ƒ(x) = ———————————————— 0,66981 + 5,3302 · e^(-0,35622·t) Wendepunkt W(5,8226/3) Maximale Wachstumsrate ƒ'(xw) = 0,53433 8 Werte Bestimmtheitsmaß = 0,99383916 Korrelationskoeff. = 0,99691482 Standardabweichung = 0,16172584

Lineare Algebra
Zielfunktion: ƒ(x,y) = 140·x + 80·y → Maximum Randbedingungen: x ≥ 0 y ≥ 0 x ≤ 600 y ≤ 700 x + y ≤ 750 3·x + y ≤ 1200 Maximum x = 225 y = 525 ƒ(x,y) = 73500

Registration
Was kostet MatheAss 9.0?
29 Euro für die Privatlizenz
79 Euro für die Schullizenz
360 Euro für die erweiterte Schullizenz, bei der die Seriennummer an die
Schüler weitergegeben werden darf.
Was kostet das Update?
10 Euro für Inhaber einer Privatlizenz
30 Euro für Inhaber einer Schullizenz
90 Euro für Inhaber einer erweiterten Schullizenz
Bei einem Upgrade von einer Schullizenz auf eine erweiterte Schullizenz werden die bereits bezahlten Registrationsgebühren angerechnet.
Wie kann ich bezahlen?
Direkt hier mit PayPal :
← hier aufklappen, um die gewünschte Lizenz auszuwählen